{"id":171,"date":"2020-05-19T07:58:57","date_gmt":"2020-05-19T07:58:57","guid":{"rendered":"http:\/\/www.engage-climate.org\/?page_id=171"},"modified":"2025-04-07T07:34:28","modified_gmt":"2025-04-07T07:34:28","slug":"publications","status":"publish","type":"page","link":"https:\/\/engage-climate.org\/publications\/","title":{"rendered":"Publications"},"content":{"rendered":"\n
The ENGAGE project regularly communicates and disseminates its innovative results through continuous publications in scientific journals. This knowledge base serves as a public resource for direct access to these articles. <\/p>\n\n\n\n
<\/p>\n\n\n\n
M\u00fcller-Casseres, E., Leblanc, F., Van Den Berg, M., Fragkos, P., Dessens, O., Naghash, H., Draeger, R., Le Gallic, T., Tagomori, I. S., Tsiropoulos, I., Emmerling, J., Baptista, L. B., Van Vuuren, D. P., Giannousakis, A., Drouet, L., Portugal-Pereira, J., De Boer, H.-S., Tsanakas, N., Rochedo, P. R. R., \u2026 Schaeffer, R. (2024). International shipping in a world below 2 \u00b0C. Nature Climate Change<\/em>, 14<\/em>(6), 600\u2013607. https:\/\/doi.org\/10.1038\/s41558-024-01997-1<\/a><\/p>\n\n\n\n Bertram, C., Brutschin, E., Luderer, G., van Ruijven, B., Aleluia Reis, L., Baptista, L. B., de Boer, H.-S., Cui, R., Daioglou, V., \u2026 Riahi, K. (2024). Feasibility of peak temperature targets in light of institutional constraints.\u00a0<\/span>Nature Climate Change, 14<\/em>, 954\u2013960.\u00a0<\/span>https:\/\/doi.org\/10.1038\/s41558-024-02073-4<\/a><\/p>\n\n\n\n Ermolieva, T., Havlik, P., Derci Augustynczik, A. L., Frank, S., Balkovi\u010d, J., Skalsk\u00fd, R., Deppermann, A., Nakhavali, A., Komendantova, N., Kahil, T., \u2026 Knopov, P. S. (2024). Tracking the dynamics and uncertainties of soil organic carbon in agricultural soils based on a novel robust meta-model framework using multisource data. Sustainability, 16<\/em>(16), 6849. https:\/\/doi.org\/10.3390\/su16166849<\/a><\/p>\n\n\n\n Frank, S., Derci Augustynczik, A. L., Havlik, P., Boere, E., Ermolieva, T., Fricko, O., Di Fulvio, F., Gusti, M., Krisztin, T., Lauri, P., \u2026 W\u00f6gerer, M. (2024). Enhanced agricultural carbon sinks provide benefits for farmers and the climate. Nature Food, 5<\/em>(9), 742\u2013753. https:\/\/doi.org\/10.1038\/s43016-024-01039-1<\/a><\/p>\n\n\n\n Fricko, O., Frank, S., Gidden, M., Huppmann, D., Johnson, N., Kishimoto, P., Kolp, P., Lovat, F., McCollum, D., Min, J., \u2026 Krey, V. (2024). MESSAGEix-GLOBIOM R11 no-policy baseline V.2. Zenodo.<\/em>https:\/\/doi.org\/10.5281\/zenodo.5793869<\/a><\/p>\n\n\n\n Kazlou, T., Cherp, A., & Jewell, J. (2024). Feasible deployment of carbon capture and storage and the requirements of climate targets. Nature Climate Change, 14<\/em>(10), 1047\u20131055. https:\/\/doi.org\/10.1038\/s41558-024-02104-0<\/a><\/p>\n\n\n\n M\u00fcller-Casseres, E., Leblanc, F., Van Den Berg, M., Fragkos, P., Dessens, O., Naghash, H., Draeger, R., Le Gallic, T., Tagomori, I. S., Tsiropoulos, I., Emmerling, J., Baptista, L. B., Van Vuuren, D. P., Giannousakis, A., Drouet, L., Portugal-Pereira, J., De Boer, H.-S., Tsanakas, N., Rochedo, P. R. R., \u2026 Schaeffer, R. (2024). International shipping in a world below 2\u202f\u00b0C. Nature Climate Change, 14<\/em>(6), 600\u2013607. https:\/\/doi.org\/10.1038\/s41558-024-01997-1<\/a><\/p>\n\n\n\n Soergel, B., Rauner, S., Daioglou, V., Weindl, I., Mastrucci, A., Carrer, F., Kikstra, J., Ambr\u00f3sio, G., Aguiar, A. P. D., Baumstark, L., \u2026 Kriegler, E. (2024). Multiple pathways towards sustainable development goals and climate targets. Environmental Research Letters, 19<\/em>(12), 124009. https:\/\/doi.org\/10.1088\/1748-9326\/ad80af<\/a><\/p>\n\n\n\n Werning, M., Frank, S., Hooke, D., Nguyen, B., Rafaj, P., Satoh, Y., W\u00f6gerer, M., Krey, V., Riahi, K., van Ruijven, B., & Byers, E. (2024). Climate Solutions Explorer \u2013 hazard, impacts and exposure data V1.1. Zenodo.<\/em>https:\/\/doi.org\/10.5281\/zenodo.14524342<\/a><\/p>\n\n\n\n Werning, M., Hooke, D., Krey, V., Riahi, K., van Ruijven, B., & Byers, E. (2024). Global warming level indicators of climate change and hotspots of exposure. Environmental Research: Climate, 3<\/em>(4), 045015. https:\/\/doi.org\/10.1088\/2752-5295\/ad8300<\/a><\/p>\n\n\n\n Zhang, S., Chen, W., Zhang, Q., Krey, V., Byers, E., Rafaj, P., Nguyen, B., Awais, M., & Riahi, K. (2024). Targeting net-zero emissions while advancing other sustainable development goals in China. Nature Sustainability, 7<\/em>, 1107\u20131119. https:\/\/doi.org\/10.1038\/s41893-024-01400-z<\/a><\/p>\n\n\n\n 2023<\/strong><\/p>\n\n\n\n Bertram, C., Brutschin, E., Riahi, K., van Ruijven, B., & Battersby, S. (2023). Feasible futures<\/em> [IIASA Policy Brief]. PB-41. https:\/\/pure.iiasa.ac.at\/id\/eprint\/19114\/<\/a><\/p>\n\n\n\n Den Elzen, M. G. J., Dafnomilis, I., Hof, A. F., Olsson, M., Beusen, A., Botzen, W. J. W., Kuramochi, T., Nascimento, L., & Rogelj, J. (2023). The impact of policy and model uncertainties on emissions projections of the Paris Agreement pledges. Environmental Research Letters<\/em>, 18<\/em>(5), 054026. https:\/\/doi.org\/10.1088\/1748-9326\/acceb7<\/a><\/p>\n\n\n\n Brutschin, E. (2023). A new hope for nuclear? In D. Scholten (Ed.), Handbook on the Geopolitics of the Energy Transition<\/em> (pp. 372\u2013386). Edward Elgar Publishing. https:\/\/doi.org\/10.4337\/9781800370432.00027<\/a> <\/p>\n\n\n\n Dekker, M. M., Daioglou, V., Pietzcker, R., Rodrigues, R., de Boer, H.-S., Dalla Longa, F., Drouet, L., Emmerling, J., Fattahi, A., Fotiou, T., Fragkos, P., Fricko, O., Gusheva, E., Harmsen, M., Huppmann, D., Kannavou, M., Krey, V., Lombardi, F., Luderer, G., \u2026 van Vuuren, D. (2023). Identifying energy model fingerprints in mitigation scenarios. Nature Energy<\/em>. https:\/\/doi.org\/doi:10.1038\/s41560-023-01399-1<\/a><\/p>\n\n\n\n Fiorini, A. C. O., Angelkorte, G., Maia, P. L., Bergman-Fonte, C., Vicente, C., Morais, T., Carvalho, L., Zanon-Zotin, M., Szklo, A., Schaeffer, R., & Portugal-Pereira, J. (2023). Sustainable aviation fuels must control induced land use change: an integrated assessment modelling exercise for Brazil. Environmental Research Letters<\/em>, 18<\/em>(1), 014036. https:\/\/doi.org\/10.1088\/1748-9326\/acaee1<\/a><\/p>\n\n\n\n Hyun, M., Cherp, A., Jewell, J., Kim, Y. J., & Eom, J. (2023). Feasibility trade-offs in decarbonising the power sector with high coal dependence: The case of Korea. Renewable and Sustainable Energy Transition<\/em>, 3<\/em>, 100050. https:\/\/doi.org\/10.1016\/j.rset.2023.100050<\/a><\/p>\n\n\n\n J\u00e4ger, J., Battersby, S., & van Ruijven, B. (2023). Stakeholder engagement in climate change solutions<\/em> [IIASA Policy Brief]. PB-42. https:\/\/pure.iiasa.ac.at\/id\/eprint\/19113\/<\/a><\/p>\n\n\n\n J\u00e4ger, J., Brutschin, E., Pianta, S., Omann, I., Kammerlander, M., Sudharmma Vishwanathan, S., Vrontisi, Z., MacDonald, J., & Van Ruijven, B. (2023). Stakeholder engagement and decarbonization pathways: Meeting the challenges of the COVID-19 pandemic. Frontiers in Sustainability<\/em>, 3<\/em>, 1063719. https:\/\/doi.org\/10.3389\/frsus.2022.1063719<\/a><\/p>\n\n\n\n Jakhmola, A., Jewell, J., Vinichenko, V., & Cherp, A. (2023). Projecting Feasible Medium-Term Growth of Wind and Solar Power Using National Trajectories and Hindcasting<\/em> [Preprint]. SSRN. https:\/\/doi.org\/10.2139\/ssrn.4501704<\/a><\/p>\n\n\n\n Jewell, J., & Cherp, A. (2023). The feasibility of climate action: Bridging the inside and the outside view through feasibility spaces. WIREs Climate Change<\/em>, 14<\/em>(5), e838. https:\/\/doi.org\/10.1002\/wcc.838<\/a><\/p>\n\n\n\n L\u00e6greid, O. M., Cherp, A., & Jewell, J. (2023). Coal phase-out pledges follow peak coal: evidence from 60 years of growth and decline in coal power capacity worldwide. Oxford Open Energy<\/em>, 2<\/em>, oiad009. https:\/\/doi.org\/10.1093\/ooenergy\/oiad009<\/a><\/p>\n\n\n\n Lamboll, R. D., Nicholls, Z. R. J., Smith, C. J., Kikstra, J. S., Byers, E., & Rogelj, J. (2023). Assessing the size and uncertainty of remaining carbon budgets. Nature Climate Change<\/em>. https:\/\/doi.org\/doi:10.1038\/s41558-023-01848-5<\/a><\/p>\n\n\n\n Limmeechokchai, B., Rajbhandari, S., Pradhan, B. B., Chunark, P., Chaichaloempreecha, A., Fujimori, S., Oshiro, K., & Ochi, Y. (2023). Scaling up climate ambition post-2030: a long-term GHG mitigation analysis for Thailand. Climate Policy<\/em>, 23<\/em>(2), 168\u2013183. https:\/\/doi.org\/10.1080\/14693062.2022.2126813<\/a><\/p>\n\n\n\n Oliveira Fiorini, A. C., Rua Rodriguez Rochedo, P., Angelkorte, G., Diuana, F. A., Imp\u00e9rio, M., Silva Carvalho, L., Nogueira Morais, T., Vasquez-Arroyo, E., & Schaeffer, R. (2023). Investigating biodiversity trends in different mitigation scenarios with a national integrated assessment model. Journal of Integrative Environmental Sciences<\/em>, 20<\/em>(1), 2239323. https:\/\/doi.org\/10.1080\/1943815X.2023.2239323<\/a><\/p>\n\n\n\n Ren, M., Huang, C., Wu, Y., Deppermann, A., Frank, S., Havl\u00edk, P., Zhu, Y., Fang, C., Ma, X., Liu, Y., Zhao, H., Chang, J., Ma, L., Bai, Z., Xu, S., & Dai, H. (2023). Enhanced food system efficiency is the key to China\u2019s 2060 carbon neutrality target. Nature Food<\/em>, 4<\/em>(7), 552\u2013564. https:\/\/doi.org\/10.1038\/s43016-023-00790-1<\/a><\/p>\n\n\n\n Schmidt Tagomori, I., Dafnomilis, I., Fricko, O., Richters, O., Bertram, C., Drouet, L., Aleluia, L., Fosse, F., Vrontisi, Z., & Fragkiadakis, D. (2023).\u202fENGAGE post-Glasgow long-term strategies<\/em>. Zenodo.\u202fhttps:\/\/doi.org\/10.5281\/zenodo.10009462 <\/p>\n\n\n\n Sferra, F., Fricko, O., Byers, E., Werning, M., Krey, V., Riahi, K., & van Ruijven, B. (2023).\u202fClimate Solutions Explorer – downscaled country-level IAM scenarios<\/em>. Zenodo.\u202fhttps:\/\/doi.org\/10.5281\/zenodo.7971573 <\/p>\n\n\n\n Suzuki, M., Jewell, J., & Cherp, A. (2023). Have climate policies accelerated energy transitions? Historical evolution of electricity mix in the G7 and the EU compared to net-zero targets. Energy Research & Social Science<\/em>, 106<\/em>, e103281. https:\/\/doi.org\/doi:10.1016\/j.erss.2023.103281<\/a><\/p>\n\n\n\n Pianta, S., & Brutschin, E. (2023). Increased ambition is needed after Glasgow. Nature Climate Change<\/em>, 13<\/em>(6), 505\u2013506. https:\/\/doi.org\/10.1038\/s41558-023-01676-7<\/a><\/p>\n\n\n\n van Ruijven, B., J\u00e4ger, J., Riahi, K., Battersby, S., Bertram, C., Bosetti, V., Brutschin, E., Byers, E., Cherp, A., Drouet, L., Fujimori, S., Krey, V., Schaeffer, R., Schmidt Tagomori, I., van Vuuren, D., Vrontisi, Z., & ENGAGE Consortium. (2023). ENGAGE Summary for Policymakers<\/em> [IIASA Policy Brief]. https:\/\/pure.iiasa.ac.at\/id\/eprint\/19116\/<\/a><\/p>\n\n\n\n Vinichenko, V., Jewell, J., Jacobsson, J., & Cherp, A. (2023). Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways. Environmental Research Letters<\/em>, 18<\/em>(9), 094066. https:\/\/doi.org\/10.1088\/1748-9326\/acf47a<\/a><\/p>\n\n\n\n Vinichenko, V., Vetier, M., Jewell, J., Nacke, L., & Cherp, A. (2023a). Phasing out coal for 2 \u00b0C target requires worldwide replication of most ambitious national plans despite security and fairness concerns. Environmental Research Letters<\/em>, 18<\/em>(1), 014031. https:\/\/doi.org\/10.1088\/1748-9326\/acadf6<\/a><\/p>\n\n\n\n Zanon-Zotin, M., Bergman-Fonte, C., Nogueira Morais, T., Barbosa Maia, P. L., Carvalho, L., Angelkorte, G., Oliveira Fiorini, A. C., Rua Rodriguez Rochedo, P., Portugal-Pereira, J., Szklo, A., & Schaeffer, R. (2023). Unpacking bio-based alternatives to ethylene production in Brazil, Europe, and the United States: A comparative life cycle assessment. Journal of Cleaner Production<\/em>, 428<\/em>, 139376. https:\/\/doi.org\/10.1016\/j.jclepro.2023.139376<\/a><\/p>\n\n\n\n 2022<\/strong><\/p>\n\n\n\n Brutschin, E., & Andrijevic, M. (2022). Why Ambitious and Just Climate Mitigation Needs Political Science. Politics and Governance<\/em>, 10<\/em>(3), 167\u2013170. https:\/\/doi.org\/10.17645\/pag.v10i3.6156<\/a><\/p>\n\n\n\n Brutschin, E., Schenuit, F., Van Ruijven, B., & Riahi, K. (2022). Exploring Enablers for an Ambitious Coal Phaseout. Politics and Governance<\/em>, 10<\/em>(3), 200\u2013212. https:\/\/doi.org\/10.17645\/pag.v10i3.5535<\/a><\/p>\n\n\n\n Dafnomilis, I., Chen, H.-H., Den Elzen, M., Fragkos, P., Chewpreecha, U., Van Soest, H., Fragkiadakis, K., Karkatsoulis, P., Paroussos, L., De Boer, H.-S., Daioglou, V., Edelenbosch, O., Kiss-Dobronyi, B., & Van Vuuren, D. P. (2022). Targeted Green Recovery Measures in a Post-COVID-19 World Enable the Energy Transition. Frontiers in Climate<\/em>, 4<\/em>, 840933. https:\/\/doi.org\/10.3389\/fclim.2022.840933<\/a><\/p>\n\n\n\n Den Elzen, M. G. J., Dafnomilis, I., Forsell, N., Fragkos, P., Fragkiadakis, K., H\u00f6hne, N., Kuramochi, T., Nascimento, L., Roelfsema, M., Van Soest, H., & Sperling, F. (2022). Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitigation and Adaptation Strategies for Global Change<\/em>, 27<\/em>(5), 33. https:\/\/doi.org\/10.1007\/s11027-022-10008-7<\/a><\/p>\n\n\n\n Franz, S., Rottoli, M., & Bertram, C. (2022). The wide range of possible aviation demand futures after the COVID-19 pandemic. Environmental Research Letters<\/em>, 17<\/em>(6), 064009. https:\/\/doi.org\/10.1088\/1748-9326\/ac65a4<\/a><\/p>\n\n\n\n Humpen\u00f6der, F., Bodirsky, B. L., Weindl, I., Lotze-Campen, H., Linder, T., & Popp, A. (2022). Projected environmental benefits of replacing beef with microbial protein. Nature<\/em>, 605<\/em>(7908), 90\u201396. https:\/\/doi.org\/10.1038\/s41586-022-04629-w<\/a><\/p>\n\n\n\n Fujimori, S., Wu, W., Doelman, J., Frank, S., Hristov, J., Kyle, P., Sands, R., Van Zeist, W.-J., Havlik, P., Dom\u00ednguez, I. P., Sahoo, A., Stehfest, E., Tabeau, A., Valin, H., Van Meijl, H., Hasegawa, T., & Takahashi, K. (2022). Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food<\/em>, 3<\/em>(2), 110\u2013121. https:\/\/doi.org\/10.1038\/s43016-022-00464-4<\/a><\/p>\n\n\n\n Hans, F., Woollands, S., Nascimento, L., H\u00f6hne, N., & Kuramochi, T. (2022). Unpacking the COVID-19 rescue and recovery spending: an assessment of implications on greenhouse gas emissions towards 2030 for key emitters. Climate Action<\/em>, 1<\/em>(1), 3. https:\/\/doi.org\/10.1007\/s44168-022-00002-9<\/a><\/p>\n\n\n\n Hickmann, T., Bertram, C., Biermann, F., Brutschin, E., Kriegler, E., Livingston, J. E., Pianta, S., Riahi, K., Van Ruijven, B., & Van Vuuren, D. (2022). Exploring Global Climate Policy Futures and Their Representation in Integrated Assessment Models. Politics and Governance<\/em>, 10<\/em>(3), 171\u2013185. https:\/\/doi.org\/10.17645\/pag.v10i3.5328<\/a><\/p>\n\n\n\n Huppmann, D., & Hackstock, P. (2022, February). The Python package pyam for analysis, validation & visualization of integrated-assessment and energy-systems scenarios. ENGAGE Capacity Building Workshop on Good Practices<\/em>. https:\/\/pure.iiasa.ac.at\/id\/eprint\/17783\/<\/a><\/p>\n\n\n\n Kikstra, J. S., Nicholls, Z. R. J., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., Sandstad, M., Meinshausen, M., Gidden, M. J., Rogelj, J., Kriegler, E., Peters, G. P., Fuglestvedt, J. S., Skeie, R. B., Samset, B. H., Wienpahl, L., Van Vuuren, D. P., Van Der Wijst, K.-I., Al Khourdajie, A., \u2026 Riahi, K. (2022). The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geoscientific Model Development<\/em>, 15<\/em>(24), 9075\u20139109. https:\/\/doi.org\/10.5194\/gmd-15-9075-2022<\/a><\/p>\n\n\n\n Limmeechokchai, B., Bahadur Pradhan, B., Chunark, P., Chaichaloempreecha, A., Rajbhandari, S., & Pita, P. (2022). Energy system transformation for attainability of net zero emissions in Thailand. International Journal of Sustainable Energy Planning and Management<\/em>, 35<\/em>, 27\u201344. https:\/\/doi.org\/10.54337\/ijsepm.7116<\/a><\/p>\n\n\n\n M\u00fcller-Casseres, E., Szklo, A., Fonte, C., Carvalho, F., Portugal-Pereira, J., Baptista, L. B., Maia, P., Rochedo, P. R. R., Draeger, R., & Schaeffer, R. (2022). Are there synergies in the decarbonization of aviation and shipping? An integrated perspective for the case of Brazil. iScience<\/em>, 25<\/em>(10), 105248. https:\/\/doi.org\/10.1016\/j.isci.2022.105248<\/a><\/p>\n\n\n\n Nacke, L., Cherp, A., & Jewell, J. (2022). Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions. Oxford Open Energy<\/em>, 1<\/em>, oiac002. https:\/\/doi.org\/10.1093\/ooenergy\/oiac002<\/a><\/p>\n\n\n\n Nascimento, L., Kuramochi, T., Iacobuta, G., Den Elzen, M., Fekete, H., Weishaupt, M., Van Soest, H. L., Roelfsema, M., Vivero-Serrano, G. D., Lui, S., Hans, F., Jose De Villafranca Casas, M., & H\u00f6hne, N. (2022). Twenty years of climate policy: G20 coverage and gaps. Climate Policy<\/em>, 22<\/em>(2), 158\u2013174. https:\/\/doi.org\/10.1080\/14693062.2021.1993776<\/a><\/p>\n\n\n\n Nicholls, Z., Meinshausen, M., Lewis, J., Smith, C. J., Forster, P. M., Fuglestvedt, J. S., Rogelj, J., Kikstra, J. S., Riahi, K., & Byers, E. (2022). Changes in IPCC Scenario Assessment Emulators Between SR1.5 and AR6 Unraveled. Geophysical Research Letters<\/em>, 49<\/em>(20), e2022GL099788. https:\/\/doi.org\/10.1029\/2022GL099788<\/a><\/p>\n\n\n\n Pianta, S., & Brutschin, E. (2022). Emissions Lock-in, Capacity, and Public Opinion: How Insights From Political Science Can Inform Climate Modeling Efforts. Politics and Governance<\/em>, 10<\/em>(3), 186\u2013199. https:\/\/doi.org\/10.17645\/pag.v10i3.5462<\/a><\/p>\n\n\n\n Reis, L. A., Drouet, L., & Tavoni, M. (2022). Internalising health-economic impacts of air pollution into climate policy: a global modelling study. The Lancet Planetary Health<\/em>, 6<\/em>(1), e40\u2013e48. https:\/\/doi.org\/10.1016\/S2542-5196(21)00259-X<\/a><\/p>\n\n\n\n Malik, A., & Bertram, C. (2022). Solar energy as an early just transition opportunity for coal-bearing states in India. Environmental Research Letters<\/em>, 17<\/em>(3), 034011. https:\/\/doi.org\/10.1088\/1748-9326\/ac5194<\/a><\/p>\n\n\n\n Roelfsema, M., Van Soest, H. L., Den Elzen, M., De Coninck, H., Kuramochi, T., Harmsen, M., Dafnomilis, I., H\u00f6hne, N., & Van Vuuren, D. P. (2022). Developing scenarios in the context of the Paris Agreement and application in the integrated assessment model IMAGE: A framework for bridging the policy-modelling divide. Environmental Science & Policy<\/em>, 135<\/em>, 104\u2013116. https:\/\/doi.org\/10.1016\/j.envsci.2022.05.001<\/a><\/p>\n\n\n\n Schmidt Tagomori, I., den Elzen, M., van Vuuren, D., Amendola Diuana, F., Schaefer, R., & Battersby, S. (2022). Promising climate progress<\/em> [IIASA Policy Brief]. PB-34. https:\/\/pure.iiasa.ac.at\/id\/eprint\/18378\/<\/a><\/p>\n\n\n\n Vrontisi, Z., & Fragkiadakis, D. (2022). A fair climate<\/em> [IIASA Policy Brief]. PB-35. https:\/\/pure.iiasa.ac.at\/id\/eprint\/18379\/<\/a><\/p>\n\n\n\n 2021<\/strong><\/p>\n\n\n\n Avashia, V., Garg, A., & Dholakia, H. (2021). Understanding temperature related health risk in context of urban land use changes. Landscape and Urban Planning<\/em>, 212<\/em>, 104107. https:\/\/doi.org\/10.1016\/j.landurbplan.2021.104107<\/a><\/p>\n\n\n\n Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A.-M., Deppermann, A., Drouet, L., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Luderer, G., Paroussos, L., Schaeffer, R., Weitzel, M., Zwaan, B. V. D., \u2026 Zakeri, B. (2021). Long-term economic benefits of stabilizing warming without overshoot \u2013 the ENGAGE model intercomparison<\/em> [Preprint]. In Review. https:\/\/doi.org\/10.21203\/rs.3.rs-127847\/v1<\/a><\/p>\n\n\n\n Battiston, S., Monasterolo, I., Riahi, K., & Van Ruijven, B. J. (2021). Accounting for finance is key for climate mitigation pathways. Science<\/em>, 372<\/em>(6545), 918\u2013920. https:\/\/doi.org\/10.1126\/science.abf3877<\/a><\/p>\n\n\n\n Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Gong, C. C., Dietrich, J. P., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Madeddu, S., Malik, A., Merfort, A., Merfort, L., Odenweller, A., \u2026 Luderer, G. (2021). REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geoscientific Model Development<\/em>, 14<\/em>(10), 6571\u20136603. https:\/\/doi.org\/10.5194\/gmd-14-6571-2021<\/a><\/p>\n\n\n\n Bertram, C., Luderer, G., Creutzig, F., Bauer, N., Ueckerdt, F., Malik, A., & Edenhofer, O. (2021). COVID-19-induced low power demand and market forces starkly reduce CO2 emissions.