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a b s t r a c t

Bottom-up energy system models rely on cost optimization to produce energy scenarios that inform
policy analyses, debates and decisions. This paper reviews the rationale for the use of cost optimization
and questions whether cost-optimal scenarios are adequate proxies of the real-world energy transition.
Evidence from ex-post modeling shows that cost optimization does not approximate the real-world UK
electricity system transition in 1990e2014. The deviation in cumulative total system costs from the cost-
optimal scenario in 1990e2014 is equal to 9e23% under various technology, cost, demand, and discount
rate assumptions. In fact, cost-optimal scenarios are shown to gloss over a large share of uncertainty that
arises due to deviations from cost optimality. Exploration of large numbers of near-optimal scenarios
under parametric uncertainty can give indication of the bounds or envelope of predictability of the real-
world transition. Concrete suggestions are then made how to improve bottom-up energy system models
to better deal with the vast uncertainty around the future energy transition. The paper closes with a
reflective discussion on the tension between predictive and exploratory use of energy system models.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Jeremy Bentham (1748e1832), thought leader of classical utili-
tarianism, first used the words ‘maximize’ and ‘minimize’ to
describe societal goals of maximizing utility and minimizing
suffering [1]. These concepts were operationalized in the early 20th
century, when mathematical optimization was invented. Since
then, optimization was used extensively in mathematics, engi-
neering, economics, and computer science. Since 1970s [2e5] and
1980s [6,7] bottom-up energy system models that rely on cost
optimization for modeling global, national and local energy sys-
tems underpin many policy analyses, debates, and decisions. Such
models have a detailed representation of energy service demands,
energy resources, technologies and infrastructures, and they
minimize total discounted system costs under technology, envi-
ronmental and policy constraints. Often perfect foresight of future
costs, technology availability, and service demands is assumed. The
solutions of such models are energy scenarios for decades ahead.
For example, National Energy Modeling System in the US [8] or
MARKAL in the UK [9] are used to produce energy scenarios to
ems Science (D-USYS), USYS
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assess national-level policy proposals or inform infrastructure
planning decisions. Open-source OSeMOSYS [10] reaches experts in
developing countries. Half of 30 integrated assessment models of
climate change that inform the latest Fifth Assessment of the
Intergovernmental Panel on Climate Change [11] are based on cost
optimization; four fifths of these cost-optimization models rely on
perfect foresight. The other half of these models implicitly use cost
optimization rationale by prioritizing least cost technologies in
their simulations. Other examples of widely used cost optimization
models are TIMES/TIAM [12], MESSAGE [7], LEAP [13], TEMOA
[14,15], Calliope [16], and many others.

Many of these bottom-up, perfect-foresight cost-optimizing
models have evolved into large-scale, complex models that rely
on thousands of parametric and structural assumptions. Although
widely used, they have been criticized too. These models have been
argued or shown to have systemic biases [17e19], to be based on
value-laden [20,21], fragile [18] or narrow assumptions [22,23], to
lead to irreproducible scenarios [24], and to have insufficiently
broad system boundaries [25]. Retrospectively, the models did not
capture structural changes in real-world transitions [23,26,27].
Detailed scenarios developed with such bottom-up models have
been argued to be inadequate for anticipating long-term phe-
nomena in face of deep uncertainties in technology, economy, and
society [28e30]. When described in detailed narratives, such sce-
narios also tend to induce overconfidence because detailed
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scenarios seem more probable that the ones that have not been
shown in detail [31]. As a result, there has been an increasing in-
terest in model evaluation to assess the performance of models, cf.
[32]. One of the unresolved critiques is the use of cost optimization
[25]. This papers aims to assess the adequacy of cost optimization
for modeling energy transitions.

Ever since the first bottom-up energy system models were
developed, there has been a tension between exploratory and
predictive use of energy scenarios. Nowadays modelers frame en-
ergy scenarios resulting from the models as possibilities what
might happen and not predictionsdthat is, as scenarios “for in-
sights, not numbers” [p. 449, 33]. But whether used for predictions
or insights, scenarios generated with models are implicitly
assumed to be able to give some indication of what is possible in
the future and, in this way, are implicitly used as proxies of the
future. From the multidimensional space of possible futures that is
defined by technical, economic, environmental and other con-
straints, bottom-up models use cost-optimization to narrow down
this space to one scenario to analyze further. But even intuitively
one senses that real-world energy system transition may not be
cost optimal. To date the bottom-upmodeling community has been
struggling to make the bridge between the need for scenarios that
are reasonable proxies of the real-world transition and the models
that cannot provide such proxies.

With the aim to resolve the aforementioned tensions and lack of
ex-post evidence in bottom-up energy system models, this paper
gathers historic evidence and conducts an ex-post modeling exer-
cise in order to understand whether cost optimization approxi-
mates the real-world energy transition. The UK electricity system
from 1990 to 2014 is modeled, using bottom-up electricity system
model D-EXPANSE. With hindsight, the actual (real-world) transi-
tion is known and can be compared to the modeled cost-optimal
scenario. As historic data on the model parameters, such as tech-
nology and fuel costs, are collected, the parametric uncertainty can
be nearly eliminated in order to enable exploration of the cost
optimization rationale. Due to its ex-post modeling approach, this
study is the first of its kind.

This paper is structured as follows: Section 2 provides an over-
view why cost optimization is used in bottom-up energy system
models andwhy itmay be limited; Section 3 introduces the bottom-
up energy system model D-EXPANSE; Section 4 describes the case
and data of the UK electricity system transition in 1990e2014;
Section 5 presents the ex-postmodeling results; Section 6 discusses
the results and proposes future research needs; Section 7 lists the
implications formodeling the future energy transitionwith bottom-
up energy system models; and Section 8 concludes.

2. Rationale for cost optimization and its limitations

Costs are among the key drivers of the energy system transition.
On this basis, there are two interlinked arguments why cost opti-
mization is used in bottom-up energy system models: the social
planner's approach and the partial equilibrium argument. The so-
cial planner's approach originates in planning and public policy and
assumes that there is a single decision maker, who aims at
achieving the best outcome for the society as a whole. Such an
outcome is reached bymaximizing the sum of the energy supplier's
and consumer's surpluses in the case of elastic demands. This
surplus maximization is transformed into an equivalent of mini-
mization of the total system costs that represent the negative of the
surplus [12]. With fixed demands, only the total costs for suppliers
are minimized. In reality, however, such a single social planner does
not exist and, especially after market liberalization, multiple
interacting energy suppliers and consumers with heterogeneous
decision powers and stakes shape the energy transition [30].
The partial equilibrium argument assumes that energy supply-
demand equilibrium is reached, when the total surplus, as in the
social planner's approach, is maximized [12]. However, the general
equilibrium assumption is not shared by institutional and evolu-
tionary economists [34], while the partial equilibrium assumption
does not account for the interaction between the analyzed sector
and the wider economy.

In addition to these critiques of both the social planner's and
partial equilibrium arguments, the heterogeneous actors in the real
world do not always act rationally as assumed in models [35,36]
and, if they do, there are other factors than only costs that they
may consider [37]. Decision may be made using the principle of
satisficing rather than optimizing, especially in face of multiple
stakes. Energy transition is actively shaped by policy makers and
other decision makers, who in the process require several alter-
natives to consider and choose from [15,38,39]. Neither posing one
cost-optimal alternative for discussion nor expecting that it will be
prescriptively followed is realistic. After all, the energy system is
highly complex and it cannot be steered to a single least cost state
anyway [40].

In light of such critiques, the bottom-up energy system
modeling community has attempted to improve the models to
deviate from cost optimal scenarios under perfect foresight to the
ones that are believed to be more realistic. Such attempts include
the myopic instead of perfect foresight versions [41], multi-
objective optimization [42], analysis of parametric uncertainty
[43,44], inclusion of external costs in addition to direct costs [45],
models of multifaceted nature of behavior and decisions [30,46],
second-best policy scenarios [47], near-optimal scenarios
[39,48e50], or modeling constraints that enforce the deviation
from cost optimality [51]. In addition, simulation rather than cost
optimization models have been developed. Simulation models rely
on historic evidence or theory-informed description of model var-
iables to simulate the future scenarios, e.g. [52].

Even if ex-post validation and broader evaluation of models has
been repeatedly called for [27,53], the handful of existing studies
compared past scenarios and real-world transition on a generic
level [17,23,26,27,31,54,55]. With the exception of McConnell and
colleagues [56], no ex-post modeling studies exist that enable
unpicking the reasons behind the mismatch of the modeled energy
scenarios and the real-world transition. For example, such reasons
could be cost optimization, parametric assumptions, structural as-
sumptions, model boundaries, or others.

Recently, three-decades-old techniques [37,57] for exploring
near-optimal solutions of optimization tasks have been applied to
bottom-up energy models [39,48e50]. All these studies have
showed that a small deviation in total system costs leads to a very
diverse set of near-optimal energy scenarios. Keepin and Wynne
[18] have already pointed out to this limitation of bottom-up en-
ergy system models, when small differences in input parameters,
such as technology costs, cause large differences in solutions. Such
limitation may not be resolved bymulti-objective optimization. For
example, Hara [50] has conducted vehicle mix optimization using
two objectives of carbon emissions and costs. The resulting Pareto
optimal solutions are less diverse than the near-Pareto optimal
solutions, i.e. solutions that have up to 0.5% higher emissions (or
costs) as compared to their respective Pareto optimal solution. In
sum, the use of optimization tends to gloss over the diversity in
possible near-optimal energy scenarios.

Even if the real-world energy system may not evolve in a cost-
optimal way, costs are still among the key drivers. It is thus
meaningful to assume that the energy systemwill not evolve in the
most expensive and irrational way. Instead, the real-world transi-
tion will likely be somewhere close to the cost-optimal scenario,
but not necessarily exactly the optimal one. Several modeling
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studies, with bottom-up or other types of models, allowed higher
than optimal system costs in energy scenarios, e.g. a deviation of
10e30% in total system costs [39,48e50,58,59]. However, there is
little evidence of what level of deviation from cost-optimality could
be adequate. Empirical evidence from interviews in Switzerland,
reported by Trutnevyte and colleagues [60], showed that various
stakeholders would accept 30% higher total system costs if the
system would reach other goals, e.g. related to environmental
concerns or energy independence. This is the only existing evi-
dence, but it originates in the stated preferences approach and thus
may also not be an adequate representation of the real world.

3. D-EXPANSE model

In order to understand whether cost optimization approximates
the real-world energy transition, the D-EXPANSE model is used to
model the UK electricity system transition from 1990 to 2014. Ac-
cording to the typology of Hourcade and colleagues [61], D-
EXPANSE (Dynamic version of EXploration of PAtterns in Near-
optimal energy ScEnarios) has the structure of the conventional,
bottom-up, technology rich, cost optimization model with perfect
foresight. Alternative typologies of bottom-up and top-down
models exist [62]. D-EXPANSE is considered bottom-up because it
does not have macro-economic completeness.

In addition, D-EXPANSE has two state-of-the-art features. First,
it systematically explores near-optimal energy scenarios
[39,48e50]. Even with a single set of input assumptions, the model
produces a wanted number of different scenarios that are either
cost-optimal or near-optimal. Near-optimal scenarios are scenarios,
whose total system costs do not exceed the predefined upper limit
that is higher than the costs of the cost-optimal scenario. Second, in
order to understand the influence of the parametric uncertainty
Monte Carlo technique is used to sample sets of various inputs.
Other existing models that explore near-optimal energy scenarios
[39,48e50] have been limited to deterministic versions and, in line
with thewedges approach [63], modeled only one single year in the
future. D-EXPANSE thus substantially extends the current models.
It models the transition from today to the future rather than
adopting the wedges approach and it conducts Monte Carlo runs to
address parametric uncertainty. D-EXPANSE complements other
versions of the EXPANSE model that adopted wedges approach
[39], was spatially explicit [49], and included optimization of other
objectives beyond costs [64].

Fig. 1 summarizes the procedure that is used for the ex-post UK
electricity system modeling. D-EXPANSE and its mathematical
formulation are introduced in detail in Appendix A. In brief, the
deterministic D-EXPANSE run and Monte Carlo runs are conducted
in parallel in order to compare them for better understanding of the
role of parametric uncertainty. D-EXPANSE is at first run in cost
optimizationmode to find the least cost solution (scenario), under a
set of supply-demand, technology and resource constraints. Then,
the total system costs of the cost-optimal scenario are evaluated
and used as the anchor point for generating the near-optimal sce-
narios. The maximum deviation, called slack and expressed as
(Cnear-optimal � Coptimal)/Coptimal, is allowed from the total costs of the
cost-optimal scenario. Costs then become a constraint and not the
objective function in D-EXPANSE. The technique of efficient
random generation [37,57] is used to produce 500 scenarios that all
meet the model constraints and do not exceed the total systems
costs plus the slack. The cost-optimal and near-optimal scenarios
are then compared to the real-world UK electricity system transi-
tion, for which the historical data are available. In Monte Carlo runs
the randomly drawn technology costs, electricity demands and
some technology parameters also produce variation in the real-
world transition and its costs.
The large ensembles of cost-optimal and near-optimal scenarios
are then analyzed for additional insights. There are 501 scenarios
(one cost-optimal and 500 near-optimal scenarios) in the set of the
deterministic D-EXPANSE run and 250'500 scenarios in the Monte
Carlo version (501 optimal and near-optimal scenarios times 500
Monte Caro runs). These large ensembles are analyzed using
descriptive statistics and scenario visualization. Nine maximally-
different scenarios, which differ from each other in installed ca-
pacity per technology as much as possible, are extracted for
detailed inspection using the adapted distance-to-selected tech-
nique [49,65].

D-EXPANSE has a rather stylized reference energy system, but
with all its essential elements. Such a stylized representation is an
advantage for reducing the computing time of thousands of model
runs and for clarity, when extracting patterns from the large and
diverse ensembles of near-optimal scenarios. D-EXPANSE models
the electricity generation mix, electricity import through inter-
connectors and pumped hydropower storage to supply the UK
electricity demand. The electricity demand is exogenously assumed
in line with the historic data and is not modeled as elastic. The
electricity dispatch is based on three-stage load curve, including
baseload, shoulder and peak loads. Transmission and distribution
are not modeled and these losses are included as exogenous as-
sumptions, since D-EXPANSE is not spatially explicit and thus
cannot account for transmission and distribution costs and effi-
ciency differences due location of power plants. Technology costs
are assumed exogenously too in line with the historic data; tech-
nology learning effects are not endogenously modeled.
4. UK electricity system transition in 1990e2014 and the
model input data

The D-EXPANSE model was used to model the UK electricity
system transition from 1990 to 2014 (five time steps of 5 years).
Since energy systemmodeling activities have been shown tomirror
the policy discussions of their time [23,66], discussions from early
1990s were used to set up the model. The UK Energy Act 1983 and
subsequent White Paper 1988 initiated the privatization process in
the UK electricity sector. This privatization was completed in 1991,
whereas the subsequent six years were spent “in search of the full
discipline of the market” [p. 12, 67] until the market was fully
opened to competition in 1999. With this aim to open the market
that was previously dominated by coal, oil and nuclear power,
policies targeted new market players, such as combined cycle gas
turbines (CCGTs). After the oil crises in 1973 and 1979, beliefs that
oil prices were on the upward trend led to stronger focus on non-
fossil fuel alternatives, such as renewable energy. For example,
first commercial wind power park started operating in the UK in
1991.

The electricity generation technologies that are included in D-
EXPANSE are taken from the studies of early 1990s [23]. The annual
supplied electricity requirement, peak demand and baseload de-
mand are available from statistics. Reconstruction of the historical
investment costs, operation and maintenance, and fuel costs have
proved to be the biggest challenge. While the fuel and investment
costs are relatively easier to find [54,67], hardly any data is available
on the operation and maintenance costs. Thus, these costs are
assumed as in various energy modeling studies in the 2000s.

The modeling data and uncertainty ranges for Monte Carlo runs
are summarized in Appendix B. Uniform distributions are used in
Monte Carlo runs, because the aim is to understand the spectrum of
uncertainty rather than deliver probabilistic modeling outcomes.
The D-EXPANSE runs are conducted for two discount rates: 3.5%
and 8%. The rate of 3.5% is the social discount rate used in recent
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modeling and policy appraisal studies [68]. The rate of 8% was used
in the UK energy modeling studies in 1990s [69,70].

In 1988 UK accepted the targets of European Union Large
Combustion Plant Directive (88/609/EEC), which aimed at limiting
sulfur dioxide, nitrogen oxides and particle emissions. Imple-
mentation of this directive imposed emission reduction from
existing power plants above 50 MW capacity as well as set a
pollution ceiling for new plants. In D-EXPANSE it is assumed that all
newly built plants are in line with the directive, because the
pollution ceiling was mandatory for new plants. Since the retire-
ment of existing plants is reconstructed from the historical statis-
tics, it is assumed that existing plants either retire or are
refurbished to meet the directive's reduction requirements.

In terms of greenhouse gas emissions, in 1990Margaret Thatcher
spoke to the Royal Society about climate change for the first time. In
1992UK signed theUnitedNations ConventiononClimate Change at
Rio de Janeiro. However, the climate mitigation action had been
maturing until 2008, when the Climate Change Act was released
[67]. Although the period after 2008 is towards the very end of the
modeled timeframe, atmospheric pollution policies and constraints
are not included inD-EXPANSE. But greenhouse gas emissions of the
generated scenarios are calculated in order to gain insight on the
interactions between cost optimization and emissions.

5. Ex-post modeling results

5.1. Cost-optimal scenario vs. real-world energy transition

The modeled cost-optimal scenario of the deterministic D-
EXPANSE model run with 3.5% discount rate is compared to the
real-world transition in terms of installed capacity in Fig. 2. The
cost-optimal scenario is not identical to the real-world transition.
First, in the early 1990s the so-called ‘dash for gas’ happened in the
UK, when gas CCGTs were rapidly deployed. In the modeled cost-
optimal scenario the ‘dash for gas’ happens to a lesser extent.
Due to perfect foresight D-EXPANSE anticipates the gas price in-
crease after 2000, related to the peak of the UK own gas production
in 2000 and the subsequent net import of gas after 2004. In the real
world neither policy makers nor investors have such perfect
foresight. This lack of perfect foresight contributes to this differ-
ence between the modeled cost-optimal scenario and real-world
transition. In fact, the real-world transition has been argued to
follow the most investable path rather than the path with the
lowest total costs in the long run [71]. If real options thinking is
adopted, then other management decisions, such as option to wait,
commit to a follow-on investment. or abandon activity, are also
considered.

Winskel [72] explained the ‘dash for gas’ in the UK as a result of a
combination of factors, such as electricity market liberalization
policies, resource availability, falling prices at the time, improving
turbine performance, atmospheric pollution legislation, and insti-
tutional tensions from the nationalization period. Pearson and
Watson [67] argued that the primary cause for the ‘dash for gas’was
the policy to bring new players into market dominated by coal: “The
RECs [Regional Electricity Companies], wanting to limit the major
player's market power, contracted for electricity from CCGTs, part
owned by RECs themselves and the oil companies. The regulator,
keen to encourage new company entry to promote competition,
allowed the RECs to include power purchase costs from IPPs [Inde-
pendent Power Producers] in their regulated price caps and so, to
pass them through to costumers. This was a controversial decisione

and was taken despite evidence that the new CCGTs could be more
expensive than the plants they were replacing” [p. 12, 67]. Especially
the last sentence shows that a deviation from the sole focus on costs
was acceptable to achieve another objective of increasing the di-
versity of market players and fostering competition.

Instead of CCGTs, the modeled cost-optimal scenario has a
higher share of new coal and nuclear power plants than the actual
transition. In reality, the construction of new nuclear plants was
under debate in the UK at that time and thus delayed. Even though
the Government gave the green light to Sizewell B nuclear plant in
1986, it was commissioned only in 1994 due to uncertain public
support and the debts of the nuclear industry. The estimates of the
levelized costs for nuclear electricity in 1990s were also higher than
the estimates for gas CCGT, although the cost out-turns, in the
subsequent years dropped [54]. The deployment of new coal plants
was limited due to the aforementioned atmospheric pollution
regulations as well as due to the coal miners' strikes in 1984e1985,
leading tomore than a half of deep coal mines being closed by 1992.
The indirect or lifecycle costs related to coal and nuclear, such as for
air pollution or long-term nuclear waste storage, were not
accounted for in D-EXPANSE.

After 2005 an increasing share of renewable electricity tech-
nologies has been deployed in the UK, as a result of stronger climate
change-related policies. Such tendency, however, is not reproduced
in the modeled cost-optimal scenario because climate change
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policies and other atmospheric pollution constraints have not been
included. Due to its focus on costs, the cost-optimal scenario does
not include costlier renewable technologies.

Due to perfect foresight themodel also anticipates the decline in
electricity demand after the economic crisis in 2008. The installed
capacity in the cost-optimal scenario thus decreases in the final
time step. In the real-world transition, however, new capacities are
built. A large share of this new capacity are renewable energy
sources that have lower contributions to the peak equation and
thus lead to a substantial difference between the total installed
capacity of the optimal scenario and the real-world transition.

Fig. 3 compares the evolution of cumulative total system costs in
the case of the modeled cost-optimal scenario and the real-world
transition. In order to make a consistent comparison, the costs of
the real-world transition are evaluated using the same technology
and fuel costs and system boundaries as in D-EXPANSE. The costs of
the real-world transition can be seen not to follow the cost-optimal
path. When 3.5% discount rate is used, the cumulative total system
costs in 1990e2004 exceed the costs of the cost-optimal scenario
by 5% and in 1990e2014 e by 16%. When 8% discount rate is used,
the deviation in 1990e2004 is 5% and in 1990e2014 e by 12%.

In order to examine whether this deviation originates in para-
metric uncertainty in energy demand, technology data and costs,
500 Monte Carlo runs are conducted for each case of 3.5% and 8%
discount rates. The spread of deviations in 1990e2004 and
1990e2014 are shown in Fig. 4. With both 3.5% and 8% discount
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rates, the deviation in cumulative total system costs of the real-
world transition from the cost-optimal scenario in most Monte
Carlo runs is about 5%. In 1990e2014 the deviation increases and
varies from 13 to 23% (3.5% discount rate) and from 9 to 17% (8%
discount rate). These findings confirm that the modeled cost-
optimal scenario does not approximate the real-world transition
and that the reason is not only rooted in the parametric uncertainty.
There is a very small number of model runs for 3.5% discount rate,
where the deviation is 0% or negative in 1990e2004, meaning that
the costs of the real-world transition are equal or below the cost-
optimal scenario. As the cost-optimal scenario in D-EXPANSE has
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Figure 4. The deviation in cumulative total system costs of the real-world tra
the least cumulative total costs in the whole period 1990e2014, it
can occur that some feasible energy scenarios could have lower
cumulative costs in the shorter term (1990e2004), but eventually
their costs exceed those of the cost-optimal scenario in the whole
period 1990e2014.

5.2. Near-optimal scenarios and technology deployment

The deterministic D-EXPANSE version is used to produce 500
near-optimal scenarios, i.e. scenarios whose cumulative total sys-
tem costs do not exceed the predefined slack. The slack is chosen as
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23% (3.5% discount rate) and 17% (8% discount rate), according to
the maximum deviation found in Fig. 4. Fig. 5 shows the ranges,
upper and lower quartiles, and medians of the installed capacity in
these near-optimal scenarios in 2000 and 2010. It can be seen that,
when the model includes several technologies with comparable
and low costs, deployment of these technologies in the near-
optimal scenarios can vary substantially. For example, the
installed capacities of coal, gas, oil, nuclear, and electricity import
vary by a magnitude of 10e40 GW. This is a known bias of cost-
optimization models, where small differences in technology costs
can produce very different energy scenarios, as Keepin and Wynne
[18] illustrated with tilting planes. Costly renewable technologies,
as a rule, appear only in a very small number of near-optimal sce-
narios, mainly in mixes that deploy other cheap technologies so
that the overall scenario costs would not exceed the predefined
slack. However, if the rest of the generation mix is relatively cheap,
there is a possibility even for costly technologies to get deployed.
The findings in Fig. 5 again support the argument that analysis of
cost-optimal scenarios glosses over the possible variety in tech-
nology deployment. Analysis of near-optimal scenarios helps to
systematically deal with such a bias.

In addition to the contributions of the individual technologies in
Fig. 5, nine maximally-different scenarios in terms of installed ca-
pacity are sampled to reveal technology combinations and are
shown in Fig. 2. A vast variety of technology deployment patterns
can be observed: from the cost-optimal scenario with coal, oil and
CCGTs to a coal-dominated scenario, a scenario with oil and CCGTs,
Fig. 5. Technology deployment in 500 near-optimal scenarios (deterministic run). The boxp
near-optimal scenarios.
a scenario with another dash for gas, and even several scenarios
with deployment of onshore or offshore wind power. As the
maximally-different scenarios are sampled by maximizing the
difference in installed capacity per technology (see Appendix A for
method), the resulting scenarios are at extremes. Such analysis can
thus be useful to explore the bounds or extremes of the near-
optimal space of energy scenarios.

5.3. Near-optimal scenarios and system costs

Fig. 6 presents the spread of cumulative investment costs and
total system costs in the cost-optimal scenario, real-world transi-
tion, and near-optimal scenarios for the Monte Carlo runs. The
near-optimal scenarios cover a sufficiently wide area to encapsulate
the real-world transition, but the spread of costs of near-optimal
scenarios is wider. Since the cost-optimal scenarios and especially
the real-world scenario exhibit less variation in technology mixes,
they are not as widely distributed as near-optimal scenarios, whose
technology mixes vary significantly.

The cost-optimal scenarios, however, fall outside the area
covered by near-optimal scenarios and this points to a bias in D-
EXPANSE. When the space (polyhedron) of feasible scenarios is
described by supply-demand, technology and other constraints,
cost-optimal scenario ends up in one of the vertices of this space.
When the additional slack constraint is added to form the near-
optimal space, a smaller sub-space of near-optimal scenarios is
formed; [64] provide a graphical illustration. This new constraint
lots present the ranges, upper and lower quartiles, and medians of installed capacity in



Fig. 6. Comparison of cumulative investment costs and total system costs by 2014 (500 Monte Carlo runs; 500 near-optimal scenarios).
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creates a new facade and many new vertices in the sub-space,
where the new slack constraint intersects with the other con-
straints. The random generation technique samples a wanted
number of these vertices from this near-optimal space. A large
share of these vertices fall on the polyhedron's facade, defined by
the new slack constraint. As a result, D-EXPANSE results in many
near-optimal scenarios that are exactly on the slack constraint's
intersection with other constraints, i.e. scenarios with total costs
that are equal to the maximum deviation allowed. Despite this bias,
Fig. 6 still shows that near-optimal scenarios are better able to
encapsulate the real-world transition than the cost-optimal
scenarios.
5.4. Near-optimal scenarios and greenhouse gas emissions

Fig. 7 shows the cumulative greenhouse gas emissions in the
modeled cost-optimal scenario, real-world transition and the near-
optimal scenarios. In order to make a consistent comparison, the
emissions of the real-world transition are evaluated using the same
emission factors and system boundaries as in D-EXPANSE. Fig. 7
shows that both cost-optimal scenarios and near-optimal sce-
narios exhibit a vast spread of cumulative emission patterns and
encapsulate the emissions from the real-world transition. The
emissions of the real-world transition have only a narrow range of
uncertainties because the emission factors are not varied in Monte
Carlo runs, but some uncertainty originates in the Monte Carlo
variations in technology deployment in the real-world transition.
The cost-optimal scenarios inMonte Carlo runs at times capture the
emissions of the real-world transition and at times e not. It can
thus be concluded that both cost-optimal and near-optimal
scenarios withMonte Carlo runs perform best together in capturing
the real-world emission patterns.
6. Discussion of the results and future research needs

The ex-post modeling of the UK electricity system transition in
1990e2014 shows that cost optimization in a bottom-up model D-
EXPANSE does not approximate the real-world transition. Neither
cumulative total system costs, investment costs nor technology
deployment or greenhouse gas emission patterns of the real-world
transition could have been captured by cost-optimal scenario only.
Monte Carlo D-EXPANSE runs show that this phenomenon does not
originate in the parametric uncertainty. The detailed comparison of
the cost-optimal scenarios and the real-world transition in Section
5.1 reveals purposeful reasons for deviation from cost optimality.
Thus, bottom-up energy system models in the future should
analyze near-optimal scenarios.

In the period of 25 years the total cumulative costs of the UK
real-world transition exceed the costs of the cost-optimal scenario
by 13e23% (3.5% discount rate) and 9e17% (8% discount rate). This
deviation shows that cost optimization may not be a completely
inadequate proxy for the real-world transition and costs are still
one of the key drivers of the transition. But even such 9e23% de-
viation in cumulative total system costs leads to a large variety of
near-optimal scenarios (e.g., Figs. 2 and 5). Even in combination
with Monte Carlo runs, analysis of cost-optimal scenarios only
glosses over the spectrum of the uncertainty. Near-optimal sce-
narios that seem as likely as the cost-optimal one are not analyzed,
preventing energy systems modeling to develop a more compre-
hensive picture of the potential futures.



Fig. 7. Comparison of cumulative greenhouse gas emissions in modeled cost-optimal scenario, real-world transition, and near-optimal scenarios (500 Monte Carlo runs; 500 near-
optimal scenarios).
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As shown in Sections 5.2e5.4, the near-optimal scenarios can
encapsulate the real-world energy transition. Yet, the width and
multidimensionality of this near-optimal space means that a very
large number of diverse near-optimal scenarios shall be sampled
and analyzed. Only by sheer luck one of the sampled scenarios may
turn out to mimic the real-world transition. It is thus more
important to treat such analysis of near-optimal scenarios as a way
to extract generic insights or as bounding analysis, answering
questions such as: what are the minimum and maximum deploy-
ment levels of a specific technology or what are the minimum and
maximum emission levels? For such types of questions, D-EXPANSE
is especially suitable because it generates near-optimal scenarios
that are on the vertices or extremes of the near-optimal space.

The presented ex-post modeling exercise with D-EXPANSE is
not without limitations, which can influence the findings. D-
EXPANSE is limited by its structural assumptions, such as repre-
sentation of the electricity system, system boundaries, absent
environmental policy constraints, and perfect foresight. First, the
current D-EXPANSE version models the transition in 5-year time
steps, without detailed annual modeling. The electricity dispatch
module has three stages only: baseload, shoulder and peak load.
While more detailed temporal resolution is preferable in the future,
it might not substantially change the finding about the real-world
deviation from cost optimality, since the deviation primarily ari-
ses from the choice of CCGT over coal or nuclear.

The current system boundaries of D-EXPANSE consider only
electricity generation, import and storage, while electricity demand
is given exogenously and is not elastic. Interactionwith others parts
of the whole energy system are not considered, for example, do-
mestic natural gas exploration, electricity transmission and distri-
bution, heating, transportation, and industrial sector, c.f. [12,73,74].
Extension of D-EXPANSE to cover the whole energy system is
preferable in the future. This extension should also include an ex-
post analysis of how well cost optimization approximates the
real-world transition of the whole energy system, beyond elec-
tricity generation. D-EXPANSE does not account for macro-eco-
nomic feedbacks.

The current D-EXPANSE version does not model environmental
policy constraints on local air pollution and greenhouse gas emis-
sions. As argued in Section 4, it was sufficient to assume that all new
coal power plants after 1990 would anyway meet the pollution re-
quirements according to the Directive 88/609/EEC and thus con-
straining the model for local pollution was not necessary. The
significant climate change action started only towards the very end
of the modeled timeframe with the Climate Change Act in 2008 and
thus was also not included. If the greenhouse gas constraint after
2008 would be modeled in the D-EXPANSE, it would not much
influence the comparison of the cost-optimal scenario and the
real-world transition, because D-EXPANSE anticipates the electricity
demand decrease after 2008 and no new capacity is built anyway.

The D-EXPANSE model, as many other current models over-
viewed in Section 1, at the moment has perfect foresight. For
example, it anticipates gas price increase after 2000 or electricity
demand decrease after 2008. Such situations may not have been
thought about at the time, when the investments were planned.
Future D-EXPANSE versions could test the performance of the
perfect versus myopic foresight.

Another group of D-EXPANSE limitations revolve around the
definition and modeling of costs. First, the ex-post analysis is
conducted with the historical cost out-turns, as far as they are
available. Such approach is useful to illustrate that cost optimi-
zation does not approximate the real-world transition not only
due to imprecise model parameters, such as costs. In the future,
ex-post modeling could be conducted with the expected future
costs rather than historical cost out-turns. Second, the best defi-
nition of slack (deviation from cost optimality) needs to be re-
flected on. Currently, D-EXPANSE defined slack in terms of
cumulative total system costs at the end of the modeling time-
frame. Yet, testing of alternate slack definitions should be done in
the future. Third, the current D-EXPANSE version considered only
direct costs. It could be argued that cost optimization that includes
external costs, multi-objective optimization that reflects multi-
faceted policy agenda, or even simulation based on history-
informed relationships may lead to narrower deviation of the
real-world transition from the optimal scenario. Ex-post evalua-
tions of alternative energy system optimization and simulation
approaches are essential to understand what performs better and
under what circumstances. Since bottom-up models that rely on
optimization of direct costs are widely used in energy modeling
community, this ex-post analysis still makes a novel contribution
to improving these models.

To what extent are these ex-post modeling findings applicable
to other contexts, subsectors, or spatial scales is a question that
requires future research. The UK electricity sector underwent a
liberalization process in 1990s and thus findings cannot be directly
extended to the cases with other governance types, e.g. in a mature
liberal market. Evidence can only be gathered by repeating ex-post
modeling exercises in other contexts.



E. Trutnevyte / Energy 106 (2016) 182e193 191
7. Implications for modeling the future

Since bottom-up cost optimization energy system models are
widely used today, the reported ex-post modeling indicates con-
crete ways how to improve the existing models. First of all, such
models shall navigate the space of cost-optimal and near-optimal
energy scenarios under parametric uncertainty. This will come at
a cost of new modeling efforts, failed experiments, and increased
computing time. But the resulting approaches, as demonstrated
with D-EXPANSE, can better embrace the vast future uncertainty
that is inherent in energy transition. In fact, the deviation from cost
optimality in the future may become even bigger in light of the
radical energy system change that is aspired today.

Such navigation of cost-optimal and near-optimal energy sce-
narios under parametric uncertainty requires new techniques to
deal with the resulting very large and diverse ensembles of energy
scenarios. Examples of such techniques are:

� Techniques that elicit insights from large scenario ensembles or
help choose small sets of scenarios that are fit for specific pur-
pose; the overview is provided in [75];

� Story-and-simulation approach [76,77]. This approach could
help anticipate some socio-political reasons for deviation from
the cost-optimal scenario, e.g., as in the storylines of governance
and policy changes [78]. At the same time, it must not be
forgotten that these storylines would enable consideration of
several fragments of the space of future energy scenarios only.

� Robust decision making [52,79,80]. This approach helps finding
policy or decision alternatives that are robust against the variety
of future developments. An initial policy alternative is tested
against the large ensemble of modeled scenarios in order to
assess inwhich cases the policy alternative fails to meet its goals
or succeeds and what are the vulnerabilities. Further policy al-
ternatives can then be formulated and tested for robustness.

The variety in cost-optimal and near-optimal energy scenarios
under parametric uncertainty means that the chance of selecting
one scenario that will exactly match the real-world transition is
extremely low. The approaches of bounding analysis [29] or ‘en-
velope of predictability’ [53] are thus recommended. These ap-
proaches argue that the multi-dimensional space of future
scenarios shall be explored by learning from the extremes or
bounds of this space. Optimization framework of D-EXPANSE and
other bottom-up energy system models becomes an advantage
here. As discussed by Keepin and Wynne [18] with tilting planes
and in Section 5.3, optimization and random generation technique
result in scenarios that automatically are on the vertices (extremes)
of the cost-optimal and near-optimal scenario space, i.e. where
several model constraints intersect. When combined with elicita-
tion of smaller numbers of maximally-different scenarios, such
analysis can provide succinct insights into the bounds of the sce-
nario space or the ‘envelope of predictability’.

Analysis of cost-optimal and near-optimal scenarios under
parametric uncertainty is not an answer to all structural assump-
tions in the bottom-up models. Multi-model multi-scenario exer-
cises, e.g. [81], can help cancel out some of the limitations of
individual models. Ex-post evaluationwill be key to understanding
what modeling approaches work best under what circumstances.

Last, but not least, opening up to a wider consideration of un-
certainty may be challenging for both scenario modelers and
especially scenario users. Practitioners at times prefer straightfor-
ward answers, even if they are over-simplistic [82,83]. Since the
communication of modeling assumptions and several modeled
scenarios has already proven to be difficult [20,21,66], the challenge
will likely be even bigger when communicating uncertainty around
near-optimal scenarios. More research and evaluation is necessary
to ensure effective communication.

8. Conclusions

Cost-optimizing bottom-up energy system models are widely
used to produce global, national and local energy scenarios that
inform energy policies and discussions. Although the use of cost-
optimization can be theoretically grounded, this paper provides
evidence from ex-post UK electricity system modeling in
1990e2014 that cost optimization does not approximate the real-
world transition. The deviation in total cumulative system costs
in 1990e2014 is found to be equal to 9e23%, under various tech-
nology, cost, demand, and discount rate assumptions. This analysis
showed that cost-optimal scenarios also gloss over a substantial
share of uncertainty that arises from deviations from cost opti-
mality. Large numbers of near-optimal scenarios could be used
instead, because such scenarios encapsulate the real-world tran-
sition. A range of concrete suggestions how to improve bottom-up
energy system models to embrace both parametric and structural
uncertainty due to cost optimization are made.

For the first time this paper provides evidence to yet unresolved
debate, whether cost optimization is a suitable proxy for modeling
the energy system transition. The findings serve as food for thought
about the tension between predictive and exploratory use of energy
system models. In the last decades, scenario community became
increasingly cautious with their confidence in ability to forecast the
future [27]. Historical studies tended to have a poor track record,
but modeling was also at the early stage of development. Inter-
estingly, this ex-post analysis shows that, if near-optimal scenarios
are considered, the models may not be able to predict the real-
world transition exactly, but they could provide the ‘envelope of
predictability’ or serve as a bounding analysis. It is challenging to
say whether with improving models and increasing experiences
the energy community could become a little more confident again.
The presented ex-post modeling results provide some hints in this
direction. Finding the answer requires further experimentation
with various models, necessarily followed by ex-post evaluations
and continuous iterative learning process.
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